Metamath Proof Explorer


Theorem sratopn

Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses srapart.a φA=subringAlgWS
srapart.s φSBaseW
Assertion sratopn φTopOpenW=TopOpenA

Proof

Step Hyp Ref Expression
1 srapart.a φA=subringAlgWS
2 srapart.s φSBaseW
3 1 2 srabase φBaseW=BaseA
4 1 2 sratset φTopSetW=TopSetA
5 3 4 topnpropd φTopOpenW=TopOpenA