Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | ||
| Assertion | sratopn | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| 2 | srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | |
| 3 | 1 2 | srabase | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 4 | 1 2 | sratset | ⊢ ( 𝜑 → ( TopSet ‘ 𝑊 ) = ( TopSet ‘ 𝐴 ) ) |
| 5 | 3 4 | topnpropd | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝐴 ) ) |