Metamath Proof Explorer


Theorem srgdilem

Description: Lemma for srgdi and srgdir . (Contributed by NM, 26-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgdilem.b B=BaseR
srgdilem.p +˙=+R
srgdilem.t ·˙=R
Assertion srgdilem RSRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙ZX+˙Y·˙Z=X·˙Z+˙Y·˙Z

Proof

Step Hyp Ref Expression
1 srgdilem.b B=BaseR
2 srgdilem.p +˙=+R
3 srgdilem.t ·˙=R
4 eqid mulGrpR=mulGrpR
5 eqid 0R=0R
6 1 4 2 3 5 issrg RSRingRCMndmulGrpRMndxByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z0R·˙x=0Rx·˙0R=0R
7 6 simp3bi RSRingxByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z0R·˙x=0Rx·˙0R=0R
8 7 r19.21bi RSRingxByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z0R·˙x=0Rx·˙0R=0R
9 8 simpld RSRingxByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
10 9 3ad2antr1 RSRingxByBzByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
11 simpr2 RSRingxByBzByB
12 rsp yBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙zyBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
13 10 11 12 sylc RSRingxByBzBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
14 simpr3 RSRingxByBzBzB
15 rsp zBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙zzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
16 13 14 15 sylc RSRingxByBzBx·˙y+˙z=x·˙y+˙x·˙zx+˙y·˙z=x·˙z+˙y·˙z
17 16 simpld RSRingxByBzBx·˙y+˙z=x·˙y+˙x·˙z
18 17 caovdig RSRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙Z
19 16 simprd RSRingxByBzBx+˙y·˙z=x·˙z+˙y·˙z
20 19 caovdirg RSRingXBYBZBX+˙Y·˙Z=X·˙Z+˙Y·˙Z
21 18 20 jca RSRingXBYBZBX·˙Y+˙Z=X·˙Y+˙X·˙ZX+˙Y·˙Z=X·˙Z+˙Y·˙Z