Metamath Proof Explorer


Theorem sscon34b

Description: Relative complementation reverses inclusion of subclasses. Relativized version of complss . (Contributed by RP, 3-Jun-2021)

Ref Expression
Assertion sscon34b ACBCABCBCA

Proof

Step Hyp Ref Expression
1 sscon ABCBCA
2 sscon CBCACCACCB
3 dfss4 ACCCA=A
4 3 biimpi ACCCA=A
5 4 adantr ACBCCCA=A
6 dfss4 BCCCB=B
7 6 biimpi BCCCB=B
8 7 adantl ACBCCCB=B
9 5 8 sseq12d ACBCCCACCBAB
10 2 9 imbitrid ACBCCBCAAB
11 1 10 impbid2 ACBCABCBCA