Metamath Proof Explorer


Theorem ssdifsn

Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021) (Proof shortened by JJ, 31-May-2022)

Ref Expression
Assertion ssdifsn ABCAB¬CA

Proof

Step Hyp Ref Expression
1 difss2 ABCAB
2 reldisj ABAC=ABC
3 2 bicomd ABABCAC=
4 1 3 biadanii ABCABAC=
5 disjsn AC=¬CA
6 5 anbi2i ABAC=AB¬CA
7 4 6 bitri ABCAB¬CA