Metamath Proof Explorer


Theorem sshhococi

Description: The join of two Hilbert space subsets (not necessarily closed subspaces) equals the join of their closures (double orthocomplements). (Contributed by NM, 1-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses sshjococ.1 A
sshjococ.2 B
Assertion sshhococi AB=AB

Proof

Step Hyp Ref Expression
1 sshjococ.1 A
2 sshjococ.2 B
3 ococss AAA
4 1 3 ax-mp AA
5 ococss BBB
6 2 5 ax-mp BB
7 unss12 AABBABAB
8 4 6 7 mp2an ABAB
9 1 2 unssi AB
10 occl AAC
11 1 10 ax-mp AC
12 11 choccli AC
13 12 chssii A
14 occl BBC
15 2 14 ax-mp BC
16 15 choccli BC
17 16 chssii B
18 13 17 unssi AB
19 9 18 occon2i ABABABAB
20 8 19 ax-mp ABAB
21 sshjval ABAB=AB
22 1 2 21 mp2an AB=AB
23 12 16 chjvali AB=AB
24 20 22 23 3sstr4i ABAB
25 ssun1 AAB
26 ococss ABABAB
27 9 26 ax-mp ABAB
28 25 27 sstri AAB
29 28 22 sseqtrri AAB
30 sshjcl ABABC
31 1 2 30 mp2an ABC
32 31 chssii AB
33 1 32 occon2i AABAAB
34 29 33 ax-mp AAB
35 ssun2 BAB
36 35 27 sstri BAB
37 36 22 sseqtrri BAB
38 2 32 occon2i BABBAB
39 37 38 ax-mp BAB
40 31 choccli ABC
41 40 choccli ABC
42 12 16 41 chlubii AABBABABAB
43 34 39 42 mp2an ABAB
44 31 ococi AB=AB
45 43 44 sseqtri ABAB
46 24 45 eqssi AB=AB