| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sshjococ.1 |
⊢ 𝐴 ⊆ ℋ |
| 2 |
|
sshjococ.2 |
⊢ 𝐵 ⊆ ℋ |
| 3 |
|
ococss |
⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 4 |
1 3
|
ax-mp |
⊢ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) |
| 5 |
|
ococss |
⊢ ( 𝐵 ⊆ ℋ → 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 6 |
2 5
|
ax-mp |
⊢ 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) |
| 7 |
|
unss12 |
⊢ ( ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∧ 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 8 |
4 6 7
|
mp2an |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 9 |
1 2
|
unssi |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ |
| 10 |
|
occl |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
| 11 |
1 10
|
ax-mp |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 12 |
11
|
choccli |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ |
| 13 |
12
|
chssii |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ℋ |
| 14 |
|
occl |
⊢ ( 𝐵 ⊆ ℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
| 15 |
2 14
|
ax-mp |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 16 |
15
|
choccli |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 17 |
16
|
chssii |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ℋ |
| 18 |
13 17
|
unssi |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ℋ |
| 19 |
9 18
|
occon2i |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) ) |
| 20 |
8 19
|
ax-mp |
⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 21 |
|
sshjval |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 22 |
1 2 21
|
mp2an |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 23 |
12 16
|
chjvali |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 24 |
20 22 23
|
3sstr4i |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 25 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 26 |
|
ococss |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( 𝐴 ∪ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 27 |
9 26
|
ax-mp |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 28 |
25 27
|
sstri |
⊢ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 29 |
28 22
|
sseqtrri |
⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 30 |
|
sshjcl |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) |
| 31 |
1 2 30
|
mp2an |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 32 |
31
|
chssii |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ℋ |
| 33 |
1 32
|
occon2i |
⊢ ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 34 |
29 33
|
ax-mp |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 35 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 36 |
35 27
|
sstri |
⊢ 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 37 |
36 22
|
sseqtrri |
⊢ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 38 |
2 32
|
occon2i |
⊢ ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 39 |
37 38
|
ax-mp |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 40 |
31
|
choccli |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∈ Cℋ |
| 41 |
40
|
choccli |
⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ∈ Cℋ |
| 42 |
12 16 41
|
chlubii |
⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
| 43 |
34 39 42
|
mp2an |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 44 |
31
|
ococi |
⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 45 |
43 44
|
sseqtri |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 46 |
24 45
|
eqssi |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |