Metamath Proof Explorer


Theorem ssoninhaus

Description: The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015)

Ref Expression
Assertion ssoninhaus 1 𝑜 2 𝑜 On Haus

Proof

Step Hyp Ref Expression
1 1on 1 𝑜 On
2 2on 2 𝑜 On
3 prssi 1 𝑜 On 2 𝑜 On 1 𝑜 2 𝑜 On
4 1 2 3 mp2an 1 𝑜 2 𝑜 On
5 df1o2 1 𝑜 =
6 pw0 𝒫 =
7 5 6 eqtr4i 1 𝑜 = 𝒫
8 0ex V
9 dishaus V 𝒫 Haus
10 8 9 ax-mp 𝒫 Haus
11 7 10 eqeltri 1 𝑜 Haus
12 df2o2 2 𝑜 =
13 pwpw0 𝒫 =
14 12 13 eqtr4i 2 𝑜 = 𝒫
15 p0ex V
16 dishaus V 𝒫 Haus
17 15 16 ax-mp 𝒫 Haus
18 14 17 eqeltri 2 𝑜 Haus
19 prssi 1 𝑜 Haus 2 𝑜 Haus 1 𝑜 2 𝑜 Haus
20 11 18 19 mp2an 1 𝑜 2 𝑜 Haus
21 4 20 ssini 1 𝑜 2 𝑜 On Haus