Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ssonprc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel | |
|
2 | ssorduni | |
|
3 | ordeleqon | |
|
4 | 2 3 | sylib | |
5 | 4 | orcomd | |
6 | 5 | ord | |
7 | uniexr | |
|
8 | 6 7 | syl6 | |
9 | 8 | con1d | |
10 | onprc | |
|
11 | uniexg | |
|
12 | eleq1 | |
|
13 | 11 12 | imbitrid | |
14 | 10 13 | mtoi | |
15 | 9 14 | impbid1 | |
16 | 1 15 | bitrid | |