Metamath Proof Explorer


Theorem ssonprc

Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013)

Ref Expression
Assertion ssonprc AOnAVA=On

Proof

Step Hyp Ref Expression
1 df-nel AV¬AV
2 ssorduni AOnOrdA
3 ordeleqon OrdAAOnA=On
4 2 3 sylib AOnAOnA=On
5 4 orcomd AOnA=OnAOn
6 5 ord AOn¬A=OnAOn
7 uniexr AOnAV
8 6 7 syl6 AOn¬A=OnAV
9 8 con1d AOn¬AVA=On
10 onprc ¬OnV
11 uniexg AVAV
12 eleq1 A=OnAVOnV
13 11 12 imbitrid A=OnAVOnV
14 10 13 mtoi A=On¬AV
15 9 14 impbid1 AOn¬AVA=On
16 1 15 bitrid AOnAVA=On