Metamath Proof Explorer


Theorem ssopab2

Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996) (Revised by Mario Carneiro, 19-May-2013)

Ref Expression
Assertion ssopab2 xyφψxy|φxy|ψ

Proof

Step Hyp Ref Expression
1 id φψφψ
2 1 anim2d φψz=xyφz=xyψ
3 2 aleximi yφψyz=xyφyz=xyψ
4 3 aleximi xyφψxyz=xyφxyz=xyψ
5 4 ss2abdv xyφψz|xyz=xyφz|xyz=xyψ
6 df-opab xy|φ=z|xyz=xyφ
7 df-opab xy|ψ=z|xyz=xyψ
8 5 6 7 3sstr4g xyφψxy|φxy|ψ