Metamath Proof Explorer


Theorem sspid

Description: A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis sspid.h H=SubSpU
Assertion sspid UNrmCVecUH

Proof

Step Hyp Ref Expression
1 sspid.h H=SubSpU
2 ssid +vU+vU
3 ssid 𝑠OLDU𝑠OLDU
4 ssid normCVUnormCVU
5 2 3 4 3pm3.2i +vU+vU𝑠OLDU𝑠OLDUnormCVUnormCVU
6 5 jctr UNrmCVecUNrmCVec+vU+vU𝑠OLDU𝑠OLDUnormCVUnormCVU
7 eqid +vU=+vU
8 eqid 𝑠OLDU=𝑠OLDU
9 eqid normCVU=normCVU
10 7 7 8 8 9 9 1 isssp UNrmCVecUHUNrmCVec+vU+vU𝑠OLDU𝑠OLDUnormCVUnormCVU
11 6 10 mpbird UNrmCVecUH