Metamath Proof Explorer


Theorem sspnval

Description: The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspn.y Y=BaseSetW
sspn.n N=normCVU
sspn.m M=normCVW
sspn.h H=SubSpU
Assertion sspnval UNrmCVecWHAYMA=NA

Proof

Step Hyp Ref Expression
1 sspn.y Y=BaseSetW
2 sspn.n N=normCVU
3 sspn.m M=normCVW
4 sspn.h H=SubSpU
5 1 2 3 4 sspn UNrmCVecWHM=NY
6 5 fveq1d UNrmCVecWHMA=NYA
7 fvres AYNYA=NA
8 6 7 sylan9eq UNrmCVecWHAYMA=NA
9 8 3impa UNrmCVecWHAYMA=NA