Description: The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sspims.y | |
|
sspims.d | |
||
sspims.c | |
||
sspims.h | |
||
Assertion | sspimsval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspims.y | |
|
2 | sspims.d | |
|
3 | sspims.c | |
|
4 | sspims.h | |
|
5 | 4 | sspnv | |
6 | eqid | |
|
7 | 1 6 | nvmcl | |
8 | 7 | 3expb | |
9 | 5 8 | sylan | |
10 | eqid | |
|
11 | eqid | |
|
12 | 1 10 11 4 | sspnval | |
13 | 12 | 3expa | |
14 | 9 13 | syldan | |
15 | eqid | |
|
16 | 1 15 6 4 | sspmval | |
17 | 16 | fveq2d | |
18 | 14 17 | eqtrd | |
19 | 1 6 11 3 | imsdval | |
20 | 19 | 3expb | |
21 | 5 20 | sylan | |
22 | eqid | |
|
23 | 22 1 4 | sspba | |
24 | 23 | sseld | |
25 | 23 | sseld | |
26 | 24 25 | anim12d | |
27 | 26 | imp | |
28 | 22 15 10 2 | imsdval | |
29 | 28 | 3expb | |
30 | 29 | adantlr | |
31 | 27 30 | syldan | |
32 | 18 21 31 | 3eqtr4d | |