Metamath Proof Explorer


Theorem sspimsval

Description: The induced metric on a subspace in terms of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspims.y Y=BaseSetW
sspims.d D=IndMetU
sspims.c C=IndMetW
sspims.h H=SubSpU
Assertion sspimsval UNrmCVecWHAYBYACB=ADB

Proof

Step Hyp Ref Expression
1 sspims.y Y=BaseSetW
2 sspims.d D=IndMetU
3 sspims.c C=IndMetW
4 sspims.h H=SubSpU
5 4 sspnv UNrmCVecWHWNrmCVec
6 eqid -vW=-vW
7 1 6 nvmcl WNrmCVecAYBYA-vWBY
8 7 3expb WNrmCVecAYBYA-vWBY
9 5 8 sylan UNrmCVecWHAYBYA-vWBY
10 eqid normCVU=normCVU
11 eqid normCVW=normCVW
12 1 10 11 4 sspnval UNrmCVecWHA-vWBYnormCVWA-vWB=normCVUA-vWB
13 12 3expa UNrmCVecWHA-vWBYnormCVWA-vWB=normCVUA-vWB
14 9 13 syldan UNrmCVecWHAYBYnormCVWA-vWB=normCVUA-vWB
15 eqid -vU=-vU
16 1 15 6 4 sspmval UNrmCVecWHAYBYA-vWB=A-vUB
17 16 fveq2d UNrmCVecWHAYBYnormCVUA-vWB=normCVUA-vUB
18 14 17 eqtrd UNrmCVecWHAYBYnormCVWA-vWB=normCVUA-vUB
19 1 6 11 3 imsdval WNrmCVecAYBYACB=normCVWA-vWB
20 19 3expb WNrmCVecAYBYACB=normCVWA-vWB
21 5 20 sylan UNrmCVecWHAYBYACB=normCVWA-vWB
22 eqid BaseSetU=BaseSetU
23 22 1 4 sspba UNrmCVecWHYBaseSetU
24 23 sseld UNrmCVecWHAYABaseSetU
25 23 sseld UNrmCVecWHBYBBaseSetU
26 24 25 anim12d UNrmCVecWHAYBYABaseSetUBBaseSetU
27 26 imp UNrmCVecWHAYBYABaseSetUBBaseSetU
28 22 15 10 2 imsdval UNrmCVecABaseSetUBBaseSetUADB=normCVUA-vUB
29 28 3expb UNrmCVecABaseSetUBBaseSetUADB=normCVUA-vUB
30 29 adantlr UNrmCVecWHABaseSetUBBaseSetUADB=normCVUA-vUB
31 27 30 syldan UNrmCVecWHAYBYADB=normCVUA-vUB
32 18 21 31 3eqtr4d UNrmCVecWHAYBYACB=ADB