Metamath Proof Explorer


Theorem imsdval

Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 27-Dec-2014) (New usage is discouraged.)

Ref Expression
Hypotheses imsdval.1 X = BaseSet U
imsdval.3 M = - v U
imsdval.6 N = norm CV U
imsdval.8 D = IndMet U
Assertion imsdval U NrmCVec A X B X A D B = N A M B

Proof

Step Hyp Ref Expression
1 imsdval.1 X = BaseSet U
2 imsdval.3 M = - v U
3 imsdval.6 N = norm CV U
4 imsdval.8 D = IndMet U
5 2 3 4 imsval U NrmCVec D = N M
6 5 3ad2ant1 U NrmCVec A X B X D = N M
7 6 fveq1d U NrmCVec A X B X D A B = N M A B
8 1 2 nvmf U NrmCVec M : X × X X
9 opelxpi A X B X A B X × X
10 fvco3 M : X × X X A B X × X N M A B = N M A B
11 8 9 10 syl2an U NrmCVec A X B X N M A B = N M A B
12 11 3impb U NrmCVec A X B X N M A B = N M A B
13 7 12 eqtrd U NrmCVec A X B X D A B = N M A B
14 df-ov A D B = D A B
15 df-ov A M B = M A B
16 15 fveq2i N A M B = N M A B
17 13 14 16 3eqtr4g U NrmCVec A X B X A D B = N A M B