Metamath Proof Explorer


Theorem sspims

Description: The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspims.y Y = BaseSet W
sspims.d D = IndMet U
sspims.c C = IndMet W
sspims.h H = SubSp U
Assertion sspims U NrmCVec W H C = D Y × Y

Proof

Step Hyp Ref Expression
1 sspims.y Y = BaseSet W
2 sspims.d D = IndMet U
3 sspims.c C = IndMet W
4 sspims.h H = SubSp U
5 1 2 3 4 sspimsval U NrmCVec W H x Y y Y x C y = x D y
6 1 3 imsdf W NrmCVec C : Y × Y
7 eqid BaseSet U = BaseSet U
8 7 2 imsdf U NrmCVec D : BaseSet U × BaseSet U
9 1 4 5 6 8 sspmlem U NrmCVec W H C = D Y × Y