Metamath Proof Explorer


Theorem sspsstr

Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)

Ref Expression
Assertion sspsstr ABBCAC

Proof

Step Hyp Ref Expression
1 sspss ABABA=B
2 psstr ABBCAC
3 2 ex ABBCAC
4 psseq1 A=BACBC
5 4 biimprd A=BBCAC
6 3 5 jaoi ABA=BBCAC
7 6 imp ABA=BBCAC
8 1 7 sylanb ABBCAC