Metamath Proof Explorer


Theorem ssralv2

Description: Quantification restricted to a subclass for two quantifiers. ssralv for two quantifiers. The proof of ssralv2 was automatically generated by minimizing the automatically translated proof of ssralv2VD . The automatic translation is by the tools program translate__without__overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ssralv2 ABCDxByDφxAyCφ

Proof

Step Hyp Ref Expression
1 nfv xABCD
2 nfra1 xxByDφ
3 ssralv ABxByDφxAyDφ
4 3 adantr ABCDxByDφxAyDφ
5 df-ral xAyDφxxAyDφ
6 4 5 imbitrdi ABCDxByDφxxAyDφ
7 sp xxAyDφxAyDφ
8 6 7 syl6 ABCDxByDφxAyDφ
9 ssralv CDyDφyCφ
10 9 adantl ABCDyDφyCφ
11 8 10 syl6d ABCDxByDφxAyCφ
12 1 2 11 ralrimd ABCDxByDφxAyCφ