Metamath Proof Explorer


Theorem sticksstones23

Description: Non-exhaustive sticks and stones. (Contributed by metakunt, 7-May-2025)

Ref Expression
Hypotheses sticksstones23.1 φ N 0
sticksstones23.2 φ S Fin
sticksstones23.3 φ S
sticksstones23.4 A = f 0 S | i S f i N
Assertion sticksstones23 φ A = ( N + S S)

Proof

Step Hyp Ref Expression
1 sticksstones23.1 φ N 0
2 sticksstones23.2 φ S Fin
3 sticksstones23.3 φ S
4 sticksstones23.4 A = f 0 S | i S f i N
5 4 a1i φ A = f 0 S | i S f i N
6 df-rab f 0 S | i S f i N = f | f 0 S i S f i N
7 6 a1i φ f 0 S | i S f i N = f | f 0 S i S f i N
8 nn0ex 0 V
9 8 a1i φ 0 V
10 elmapg 0 V S Fin f 0 S f : S 0
11 9 2 10 syl2anc φ f 0 S f : S 0
12 11 anbi1d φ f 0 S i S f i N f : S 0 i S f i N
13 12 abbidv φ f | f 0 S i S f i N = f | f : S 0 i S f i N
14 7 13 eqtrd φ f 0 S | i S f i N = f | f : S 0 i S f i N
15 5 14 eqtrd φ A = f | f : S 0 i S f i N
16 15 fveq2d φ A = f | f : S 0 i S f i N
17 eqid f | f : S 0 i S f i N = f | f : S 0 i S f i N
18 1 2 3 17 sticksstones22 φ f | f : S 0 i S f i N = ( N + S S)
19 16 18 eqtrd φ A = ( N + S S)