Metamath Proof Explorer


Theorem stji1i

Description: Join of components of Sasaki arrow ->1. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stle.1 AC
stle.2 BC
Assertion stji1i SStatesSAAB=SA+SAB

Proof

Step Hyp Ref Expression
1 stle.1 AC
2 stle.2 BC
3 1 choccli AC
4 1 2 chincli ABC
5 3 4 pm3.2i ACABC
6 inss1 ABA
7 4 1 chsscon3i ABAAAB
8 6 7 mpbi AAB
9 stj SStatesACABCAABSAAB=SA+SAB
10 5 8 9 mp2ani SStatesSAAB=SA+SAB