Metamath Proof Explorer


Theorem stm1add3i

Description: Sum of states whose meet is 1. (Contributed by NM, 11-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stle.1 AC
stle.2 BC
stm1add3.3 CC
Assertion stm1add3i SStatesSABC=1SA+SB+SC=3

Proof

Step Hyp Ref Expression
1 stle.1 AC
2 stle.2 BC
3 stm1add3.3 CC
4 1 2 chincli ABC
5 4 3 stm1i SStatesSABC=1SAB=1
6 1 2 stm1addi SStatesSAB=1SA+SB=2
7 5 6 syld SStatesSABC=1SA+SB=2
8 4 3 stm1ri SStatesSABC=1SC=1
9 7 8 jcad SStatesSABC=1SA+SB=2SC=1
10 oveq12 SA+SB=2SC=1SA+SB+SC=2+1
11 df-3 3=2+1
12 10 11 eqtr4di SA+SB=2SC=1SA+SB+SC=3
13 9 12 syl6 SStatesSABC=1SA+SB+SC=3