Metamath Proof Explorer


Theorem stm1addi

Description: Sum of states whose meet is 1. (Contributed by NM, 11-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stle.1 AC
stle.2 BC
Assertion stm1addi SStatesSAB=1SA+SB=2

Proof

Step Hyp Ref Expression
1 stle.1 AC
2 stle.2 BC
3 1 2 stm1i SStatesSAB=1SA=1
4 1 2 stm1ri SStatesSAB=1SB=1
5 3 4 jcad SStatesSAB=1SA=1SB=1
6 oveq12 SA=1SB=1SA+SB=1+1
7 df-2 2=1+1
8 6 7 eqtr4di SA=1SB=1SA+SB=2
9 5 8 syl6 SStatesSAB=1SA+SB=2