Metamath Proof Explorer


Theorem sub2cncf

Description: Subtraction from a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypothesis sub2cncf.1 F=xAx
Assertion sub2cncf AF:cn

Proof

Step Hyp Ref Expression
1 sub2cncf.1 F=xAx
2 eqid TopOpenfld=TopOpenfld
3 2 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
4 3 a1i ATopOpenfld×tTopOpenfldCnTopOpenfld
5 ssid
6 cncfmptc AxA:cn
7 5 5 6 mp3an23 AxA:cn
8 eqid xx=xx
9 8 idcncf xx:cn
10 9 a1i Axx:cn
11 2 4 7 10 cncfmpt2f AxAx:cn
12 1 11 eqeltrid AF:cn