Metamath Proof Explorer


Theorem sub2cncfd

Description: Subtraction from a constant is a continuous function. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses sub2cncfd.1 φA
sub2cncfd.2 F=xAx
Assertion sub2cncfd φF:cn

Proof

Step Hyp Ref Expression
1 sub2cncfd.1 φA
2 sub2cncfd.2 F=xAx
3 ssid
4 3 a1i φ
5 cncfmptc AxA:cn
6 1 4 4 5 syl3anc φxA:cn
7 cncfmptid xx:cn
8 3 3 7 mp2an xx:cn
9 8 a1i φxx:cn
10 6 9 subcncf φxAx:cn
11 2 10 eqeltrid φF:cn