Metamath Proof Explorer


Theorem subadd23

Description: Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007)

Ref Expression
Assertion subadd23 ABCA-B+C=A+C-B

Proof

Step Hyp Ref Expression
1 addsub ACBA+C-B=A-B+C
2 addsubass ACBA+C-B=A+C-B
3 1 2 eqtr3d ACBA-B+C=A+C-B
4 3 3com23 ABCA-B+C=A+C-B