Metamath Proof Explorer


Theorem subeq0bd

Description: If two complex numbers are equal, their difference is zero. Consequence of subeq0ad . Converse of subeq0d . Contrapositive of subne0ad . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses subeq0bd.1 φA
subeq0bd.2 φA=B
Assertion subeq0bd φAB=0

Proof

Step Hyp Ref Expression
1 subeq0bd.1 φA
2 subeq0bd.2 φA=B
3 2 1 eqeltrrd φB
4 1 3 subeq0ad φAB=0A=B
5 2 4 mpbird φAB=0