Metamath Proof Explorer


Theorem subg0cl

Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subg0cl.i 0˙=0G
Assertion subg0cl SSubGrpG0˙S

Proof

Step Hyp Ref Expression
1 subg0cl.i 0˙=0G
2 eqid G𝑠S=G𝑠S
3 2 subggrp SSubGrpGG𝑠SGrp
4 eqid BaseG𝑠S=BaseG𝑠S
5 eqid 0G𝑠S=0G𝑠S
6 4 5 grpidcl G𝑠SGrp0G𝑠SBaseG𝑠S
7 3 6 syl SSubGrpG0G𝑠SBaseG𝑠S
8 2 1 subg0 SSubGrpG0˙=0G𝑠S
9 2 subgbas SSubGrpGS=BaseG𝑠S
10 7 8 9 3eltr4d SSubGrpG0˙S