Metamath Proof Explorer


Theorem subgdisjb

Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth , this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses subgdisj.p +˙=+G
subgdisj.o 0˙=0G
subgdisj.z Z=CntzG
subgdisj.t φTSubGrpG
subgdisj.u φUSubGrpG
subgdisj.i φTU=0˙
subgdisj.s φTZU
subgdisj.a φAT
subgdisj.c φCT
subgdisj.b φBU
subgdisj.d φDU
Assertion subgdisjb φA+˙B=C+˙DA=CB=D

Proof

Step Hyp Ref Expression
1 subgdisj.p +˙=+G
2 subgdisj.o 0˙=0G
3 subgdisj.z Z=CntzG
4 subgdisj.t φTSubGrpG
5 subgdisj.u φUSubGrpG
6 subgdisj.i φTU=0˙
7 subgdisj.s φTZU
8 subgdisj.a φAT
9 subgdisj.c φCT
10 subgdisj.b φBU
11 subgdisj.d φDU
12 4 adantr φA+˙B=C+˙DTSubGrpG
13 5 adantr φA+˙B=C+˙DUSubGrpG
14 6 adantr φA+˙B=C+˙DTU=0˙
15 7 adantr φA+˙B=C+˙DTZU
16 8 adantr φA+˙B=C+˙DAT
17 9 adantr φA+˙B=C+˙DCT
18 10 adantr φA+˙B=C+˙DBU
19 11 adantr φA+˙B=C+˙DDU
20 simpr φA+˙B=C+˙DA+˙B=C+˙D
21 1 2 3 12 13 14 15 16 17 18 19 20 subgdisj1 φA+˙B=C+˙DA=C
22 1 2 3 12 13 14 15 16 17 18 19 20 subgdisj2 φA+˙B=C+˙DB=D
23 21 22 jca φA+˙B=C+˙DA=CB=D
24 23 ex φA+˙B=C+˙DA=CB=D
25 oveq12 A=CB=DA+˙B=C+˙D
26 24 25 impbid1 φA+˙B=C+˙DA=CB=D