Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth , this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014) (Revised by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subgdisj.p | |
|
subgdisj.o | |
||
subgdisj.z | |
||
subgdisj.t | |
||
subgdisj.u | |
||
subgdisj.i | |
||
subgdisj.s | |
||
subgdisj.a | |
||
subgdisj.c | |
||
subgdisj.b | |
||
subgdisj.d | |
||
Assertion | subgdisjb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgdisj.p | |
|
2 | subgdisj.o | |
|
3 | subgdisj.z | |
|
4 | subgdisj.t | |
|
5 | subgdisj.u | |
|
6 | subgdisj.i | |
|
7 | subgdisj.s | |
|
8 | subgdisj.a | |
|
9 | subgdisj.c | |
|
10 | subgdisj.b | |
|
11 | subgdisj.d | |
|
12 | 4 | adantr | |
13 | 5 | adantr | |
14 | 6 | adantr | |
15 | 7 | adantr | |
16 | 8 | adantr | |
17 | 9 | adantr | |
18 | 10 | adantr | |
19 | 11 | adantr | |
20 | simpr | |
|
21 | 1 2 3 12 13 14 15 16 17 18 19 20 | subgdisj1 | |
22 | 1 2 3 12 13 14 15 16 17 18 19 20 | subgdisj2 | |
23 | 21 22 | jca | |
24 | 23 | ex | |
25 | oveq12 | |
|
26 | 24 25 | impbid1 | |