Metamath Proof Explorer


Theorem subgdisjb

Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth , this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses subgdisj.p + ˙ = + G
subgdisj.o 0 ˙ = 0 G
subgdisj.z Z = Cntz G
subgdisj.t φ T SubGrp G
subgdisj.u φ U SubGrp G
subgdisj.i φ T U = 0 ˙
subgdisj.s φ T Z U
subgdisj.a φ A T
subgdisj.c φ C T
subgdisj.b φ B U
subgdisj.d φ D U
Assertion subgdisjb φ A + ˙ B = C + ˙ D A = C B = D

Proof

Step Hyp Ref Expression
1 subgdisj.p + ˙ = + G
2 subgdisj.o 0 ˙ = 0 G
3 subgdisj.z Z = Cntz G
4 subgdisj.t φ T SubGrp G
5 subgdisj.u φ U SubGrp G
6 subgdisj.i φ T U = 0 ˙
7 subgdisj.s φ T Z U
8 subgdisj.a φ A T
9 subgdisj.c φ C T
10 subgdisj.b φ B U
11 subgdisj.d φ D U
12 4 adantr φ A + ˙ B = C + ˙ D T SubGrp G
13 5 adantr φ A + ˙ B = C + ˙ D U SubGrp G
14 6 adantr φ A + ˙ B = C + ˙ D T U = 0 ˙
15 7 adantr φ A + ˙ B = C + ˙ D T Z U
16 8 adantr φ A + ˙ B = C + ˙ D A T
17 9 adantr φ A + ˙ B = C + ˙ D C T
18 10 adantr φ A + ˙ B = C + ˙ D B U
19 11 adantr φ A + ˙ B = C + ˙ D D U
20 simpr φ A + ˙ B = C + ˙ D A + ˙ B = C + ˙ D
21 1 2 3 12 13 14 15 16 17 18 19 20 subgdisj1 φ A + ˙ B = C + ˙ D A = C
22 1 2 3 12 13 14 15 16 17 18 19 20 subgdisj2 φ A + ˙ B = C + ˙ D B = D
23 21 22 jca φ A + ˙ B = C + ˙ D A = C B = D
24 23 ex φ A + ˙ B = C + ˙ D A = C B = D
25 oveq12 A = C B = D A + ˙ B = C + ˙ D
26 24 25 impbid1 φ A + ˙ B = C + ˙ D A = C B = D