Database
BASIC ALGEBRAIC STRUCTURES
Groups
Subgroups and Quotient groups
subgid
Next ⟩
subggrp
Metamath Proof Explorer
Ascii
Unicode
Theorem
subgid
Description:
A group is a subgroup of itself.
(Contributed by
Mario Carneiro
, 7-Dec-2014)
Ref
Expression
Hypothesis
issubg.b
⊢
B
=
Base
G
Assertion
subgid
⊢
G
∈
Grp
→
B
∈
SubGrp
⁡
G
Proof
Step
Hyp
Ref
Expression
1
issubg.b
⊢
B
=
Base
G
2
id
⊢
G
∈
Grp
→
G
∈
Grp
3
ssidd
⊢
G
∈
Grp
→
B
⊆
B
4
1
ressid
⊢
G
∈
Grp
→
G
↾
𝑠
B
=
G
5
4
2
eqeltrd
⊢
G
∈
Grp
→
G
↾
𝑠
B
∈
Grp
6
1
issubg
⊢
B
∈
SubGrp
⁡
G
↔
G
∈
Grp
∧
B
⊆
B
∧
G
↾
𝑠
B
∈
Grp
7
2
3
5
6
syl3anbrc
⊢
G
∈
Grp
→
B
∈
SubGrp
⁡
G