Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Sequences defined by strong recursion
subiwrdlen
Next ⟩
iwrdsplit
Metamath Proof Explorer
Ascii
Unicode
Theorem
subiwrdlen
Description:
Length of a subword of an infinite word.
(Contributed by
Thierry Arnoux
, 25-Apr-2019)
Ref
Expression
Hypotheses
iwrdsplit.s
⊢
φ
→
S
∈
V
iwrdsplit.f
⊢
φ
→
F
:
ℕ
0
⟶
S
iwrdsplit.n
⊢
φ
→
N
∈
ℕ
0
Assertion
subiwrdlen
⊢
φ
→
F
↾
0
..^
N
=
N
Proof
Step
Hyp
Ref
Expression
1
iwrdsplit.s
⊢
φ
→
S
∈
V
2
iwrdsplit.f
⊢
φ
→
F
:
ℕ
0
⟶
S
3
iwrdsplit.n
⊢
φ
→
N
∈
ℕ
0
4
2
ffnd
⊢
φ
→
F
Fn
ℕ
0
5
fzo0ssnn0
⊢
0
..^
N
⊆
ℕ
0
6
fnssres
⊢
F
Fn
ℕ
0
∧
0
..^
N
⊆
ℕ
0
→
F
↾
0
..^
N
Fn
0
..^
N
7
4
5
6
sylancl
⊢
φ
→
F
↾
0
..^
N
Fn
0
..^
N
8
hashfn
⊢
F
↾
0
..^
N
Fn
0
..^
N
→
F
↾
0
..^
N
=
0
..^
N
9
7
8
syl
⊢
φ
→
F
↾
0
..^
N
=
0
..^
N
10
hashfzo0
⊢
N
∈
ℕ
0
→
0
..^
N
=
N
11
3
10
syl
⊢
φ
→
0
..^
N
=
N
12
9
11
eqtrd
⊢
φ
→
F
↾
0
..^
N
=
N