Metamath Proof Explorer


Theorem subiwrdlen

Description: Length of a subword of an infinite word. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Hypotheses iwrdsplit.s φ S V
iwrdsplit.f φ F : 0 S
iwrdsplit.n φ N 0
Assertion subiwrdlen φ F 0 ..^ N = N

Proof

Step Hyp Ref Expression
1 iwrdsplit.s φ S V
2 iwrdsplit.f φ F : 0 S
3 iwrdsplit.n φ N 0
4 2 ffnd φ F Fn 0
5 fzo0ssnn0 0 ..^ N 0
6 fnssres F Fn 0 0 ..^ N 0 F 0 ..^ N Fn 0 ..^ N
7 4 5 6 sylancl φ F 0 ..^ N Fn 0 ..^ N
8 hashfn F 0 ..^ N Fn 0 ..^ N F 0 ..^ N = 0 ..^ N
9 7 8 syl φ F 0 ..^ N = 0 ..^ N
10 hashfzo0 N 0 0 ..^ N = N
11 3 10 syl φ 0 ..^ N = N
12 9 11 eqtrd φ F 0 ..^ N = N