Metamath Proof Explorer


Theorem subne0nn

Description: A nonnegative difference is positive if the two numbers are not equal. (Contributed by Thierry Arnoux, 17-Dec-2023)

Ref Expression
Hypotheses subne0nn.1 φ M
subne0nn.2 φ N
subne0nn.3 φ M N 0
subne0nn.4 φ M N
Assertion subne0nn φ M N

Proof

Step Hyp Ref Expression
1 subne0nn.1 φ M
2 subne0nn.2 φ N
3 subne0nn.3 φ M N 0
4 subne0nn.4 φ M N
5 1 2 4 subne0d φ M N 0
6 elnnne0 M N M N 0 M N 0
7 3 5 6 sylanbrc φ M N