Metamath Proof Explorer
Description: A nonnegative difference is positive if the two numbers are not equal.
(Contributed by Thierry Arnoux, 17-Dec-2023)
|
|
Ref |
Expression |
|
Hypotheses |
subne0nn.1 |
|
|
|
subne0nn.2 |
|
|
|
subne0nn.3 |
|
|
|
subne0nn.4 |
|
|
Assertion |
subne0nn |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
subne0nn.1 |
|
2 |
|
subne0nn.2 |
|
3 |
|
subne0nn.3 |
|
4 |
|
subne0nn.4 |
|
5 |
1 2 4
|
subne0d |
|
6 |
|
elnnne0 |
|
7 |
3 5 6
|
sylanbrc |
|