Metamath Proof Explorer


Theorem subrngin

Description: The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025)

Ref Expression
Assertion subrngin Could not format assertion : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> ( A i^i B ) e. ( SubRng ` R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 intprg Could not format ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> |^| { A , B } = ( A i^i B ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> |^| { A , B } = ( A i^i B ) ) with typecode |-
2 prssi Could not format ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> { A , B } C_ ( SubRng ` R ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> { A , B } C_ ( SubRng ` R ) ) with typecode |-
3 prnzg Could not format ( A e. ( SubRng ` R ) -> { A , B } =/= (/) ) : No typesetting found for |- ( A e. ( SubRng ` R ) -> { A , B } =/= (/) ) with typecode |-
4 3 adantr Could not format ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> { A , B } =/= (/) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> { A , B } =/= (/) ) with typecode |-
5 subrngint Could not format ( ( { A , B } C_ ( SubRng ` R ) /\ { A , B } =/= (/) ) -> |^| { A , B } e. ( SubRng ` R ) ) : No typesetting found for |- ( ( { A , B } C_ ( SubRng ` R ) /\ { A , B } =/= (/) ) -> |^| { A , B } e. ( SubRng ` R ) ) with typecode |-
6 2 4 5 syl2anc Could not format ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> |^| { A , B } e. ( SubRng ` R ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> |^| { A , B } e. ( SubRng ` R ) ) with typecode |-
7 1 6 eqeltrrd Could not format ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> ( A i^i B ) e. ( SubRng ` R ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> ( A i^i B ) e. ( SubRng ` R ) ) with typecode |-