| Step | Hyp | Ref | Expression | 
						
							| 1 |  | intprg | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑅 ) )  →  ∩  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 2 |  | prssi | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑅 ) )  →  { 𝐴 ,  𝐵 }  ⊆  ( SubRng ‘ 𝑅 ) ) | 
						
							| 3 |  | prnzg | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  { 𝐴 ,  𝐵 }  ≠  ∅ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑅 ) )  →  { 𝐴 ,  𝐵 }  ≠  ∅ ) | 
						
							| 5 |  | subrngint | ⊢ ( ( { 𝐴 ,  𝐵 }  ⊆  ( SubRng ‘ 𝑅 )  ∧  { 𝐴 ,  𝐵 }  ≠  ∅ )  →  ∩  { 𝐴 ,  𝐵 }  ∈  ( SubRng ‘ 𝑅 ) ) | 
						
							| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑅 ) )  →  ∩  { 𝐴 ,  𝐵 }  ∈  ( SubRng ‘ 𝑅 ) ) | 
						
							| 7 | 1 6 | eqeltrrd | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑅 ) )  →  ( 𝐴  ∩  𝐵 )  ∈  ( SubRng ‘ 𝑅 ) ) |