| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrngsubg |
⊢ ( 𝑟 ∈ ( SubRng ‘ 𝑅 ) → 𝑟 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 2 |
1
|
ssriv |
⊢ ( SubRng ‘ 𝑅 ) ⊆ ( SubGrp ‘ 𝑅 ) |
| 3 |
|
sstr |
⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ ( SubRng ‘ 𝑅 ) ⊆ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ) |
| 4 |
2 3
|
mpan2 |
⊢ ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) → 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ) |
| 5 |
|
subgint |
⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 6 |
4 5
|
sylan |
⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 7 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑟 ∈ 𝑆 ) → 𝑟 ∈ ( SubRng ‘ 𝑅 ) ) |
| 8 |
7
|
ad4ant14 |
⊢ ( ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑟 ∈ ( SubRng ‘ 𝑅 ) ) |
| 9 |
|
simprl |
⊢ ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑥 ∈ ∩ 𝑆 ) |
| 10 |
|
elinti |
⊢ ( 𝑥 ∈ ∩ 𝑆 → ( 𝑟 ∈ 𝑆 → 𝑥 ∈ 𝑟 ) ) |
| 11 |
10
|
imp |
⊢ ( ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆 ) → 𝑥 ∈ 𝑟 ) |
| 12 |
9 11
|
sylan |
⊢ ( ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑥 ∈ 𝑟 ) |
| 13 |
|
simprr |
⊢ ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑦 ∈ ∩ 𝑆 ) |
| 14 |
|
elinti |
⊢ ( 𝑦 ∈ ∩ 𝑆 → ( 𝑟 ∈ 𝑆 → 𝑦 ∈ 𝑟 ) ) |
| 15 |
14
|
imp |
⊢ ( ( 𝑦 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆 ) → 𝑦 ∈ 𝑟 ) |
| 16 |
13 15
|
sylan |
⊢ ( ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑦 ∈ 𝑟 ) |
| 17 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 18 |
17
|
subrngmcl |
⊢ ( ( 𝑟 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑟 ∧ 𝑦 ∈ 𝑟 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 19 |
8 12 16 18
|
syl3anc |
⊢ ( ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 20 |
19
|
ralrimiva |
⊢ ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ∀ 𝑟 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 21 |
|
ovex |
⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ V |
| 22 |
21
|
elint2 |
⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ↔ ∀ 𝑟 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 23 |
20 22
|
sylibr |
⊢ ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 24 |
23
|
ralrimivva |
⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 25 |
|
ssn0 |
⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( SubRng ‘ 𝑅 ) ≠ ∅ ) |
| 26 |
|
n0 |
⊢ ( ( SubRng ‘ 𝑅 ) ≠ ∅ ↔ ∃ 𝑟 𝑟 ∈ ( SubRng ‘ 𝑅 ) ) |
| 27 |
|
subrngrcl |
⊢ ( 𝑟 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) |
| 28 |
27
|
exlimiv |
⊢ ( ∃ 𝑟 𝑟 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) |
| 29 |
26 28
|
sylbi |
⊢ ( ( SubRng ‘ 𝑅 ) ≠ ∅ → 𝑅 ∈ Rng ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 31 |
30 17
|
issubrng2 |
⊢ ( 𝑅 ∈ Rng → ( ∩ 𝑆 ∈ ( SubRng ‘ 𝑅 ) ↔ ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) ) ) |
| 32 |
25 29 31
|
3syl |
⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( ∩ 𝑆 ∈ ( SubRng ‘ 𝑅 ) ↔ ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) ) ) |
| 33 |
6 24 32
|
mpbir2and |
⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubRng ‘ 𝑅 ) ) |