| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrngsubg |  |-  ( r e. ( SubRng ` R ) -> r e. ( SubGrp ` R ) ) | 
						
							| 2 | 1 | ssriv |  |-  ( SubRng ` R ) C_ ( SubGrp ` R ) | 
						
							| 3 |  | sstr |  |-  ( ( S C_ ( SubRng ` R ) /\ ( SubRng ` R ) C_ ( SubGrp ` R ) ) -> S C_ ( SubGrp ` R ) ) | 
						
							| 4 | 2 3 | mpan2 |  |-  ( S C_ ( SubRng ` R ) -> S C_ ( SubGrp ` R ) ) | 
						
							| 5 |  | subgint |  |-  ( ( S C_ ( SubGrp ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) | 
						
							| 6 | 4 5 | sylan |  |-  ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) | 
						
							| 7 |  | ssel2 |  |-  ( ( S C_ ( SubRng ` R ) /\ r e. S ) -> r e. ( SubRng ` R ) ) | 
						
							| 8 | 7 | ad4ant14 |  |-  ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> r e. ( SubRng ` R ) ) | 
						
							| 9 |  | simprl |  |-  ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> x e. |^| S ) | 
						
							| 10 |  | elinti |  |-  ( x e. |^| S -> ( r e. S -> x e. r ) ) | 
						
							| 11 | 10 | imp |  |-  ( ( x e. |^| S /\ r e. S ) -> x e. r ) | 
						
							| 12 | 9 11 | sylan |  |-  ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> x e. r ) | 
						
							| 13 |  | simprr |  |-  ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> y e. |^| S ) | 
						
							| 14 |  | elinti |  |-  ( y e. |^| S -> ( r e. S -> y e. r ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( y e. |^| S /\ r e. S ) -> y e. r ) | 
						
							| 16 | 13 15 | sylan |  |-  ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> y e. r ) | 
						
							| 17 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 18 | 17 | subrngmcl |  |-  ( ( r e. ( SubRng ` R ) /\ x e. r /\ y e. r ) -> ( x ( .r ` R ) y ) e. r ) | 
						
							| 19 | 8 12 16 18 | syl3anc |  |-  ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> ( x ( .r ` R ) y ) e. r ) | 
						
							| 20 | 19 | ralrimiva |  |-  ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> A. r e. S ( x ( .r ` R ) y ) e. r ) | 
						
							| 21 |  | ovex |  |-  ( x ( .r ` R ) y ) e. _V | 
						
							| 22 | 21 | elint2 |  |-  ( ( x ( .r ` R ) y ) e. |^| S <-> A. r e. S ( x ( .r ` R ) y ) e. r ) | 
						
							| 23 | 20 22 | sylibr |  |-  ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> ( x ( .r ` R ) y ) e. |^| S ) | 
						
							| 24 | 23 | ralrimivva |  |-  ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) | 
						
							| 25 |  | ssn0 |  |-  ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> ( SubRng ` R ) =/= (/) ) | 
						
							| 26 |  | n0 |  |-  ( ( SubRng ` R ) =/= (/) <-> E. r r e. ( SubRng ` R ) ) | 
						
							| 27 |  | subrngrcl |  |-  ( r e. ( SubRng ` R ) -> R e. Rng ) | 
						
							| 28 | 27 | exlimiv |  |-  ( E. r r e. ( SubRng ` R ) -> R e. Rng ) | 
						
							| 29 | 26 28 | sylbi |  |-  ( ( SubRng ` R ) =/= (/) -> R e. Rng ) | 
						
							| 30 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 31 | 30 17 | issubrng2 |  |-  ( R e. Rng -> ( |^| S e. ( SubRng ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) | 
						
							| 32 | 25 29 31 | 3syl |  |-  ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> ( |^| S e. ( SubRng ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) | 
						
							| 33 | 6 24 32 | mpbir2and |  |-  ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> |^| S e. ( SubRng ` R ) ) |