| Step | Hyp | Ref | Expression | 
						
							| 1 |  | intprg |  |-  ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> |^| { A , B } = ( A i^i B ) ) | 
						
							| 2 |  | prssi |  |-  ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> { A , B } C_ ( SubRng ` R ) ) | 
						
							| 3 |  | prnzg |  |-  ( A e. ( SubRng ` R ) -> { A , B } =/= (/) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> { A , B } =/= (/) ) | 
						
							| 5 |  | subrngint |  |-  ( ( { A , B } C_ ( SubRng ` R ) /\ { A , B } =/= (/) ) -> |^| { A , B } e. ( SubRng ` R ) ) | 
						
							| 6 | 2 4 5 | syl2anc |  |-  ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> |^| { A , B } e. ( SubRng ` R ) ) | 
						
							| 7 | 1 6 | eqeltrrd |  |-  ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> ( A i^i B ) e. ( SubRng ` R ) ) |