Metamath Proof Explorer


Theorem subrngmre

Description: The subrings of a non-unital ring are a Moore system. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypothesis subrngmre.b
|- B = ( Base ` R )
Assertion subrngmre
|- ( R e. Rng -> ( SubRng ` R ) e. ( Moore ` B ) )

Proof

Step Hyp Ref Expression
1 subrngmre.b
 |-  B = ( Base ` R )
2 1 subrngss
 |-  ( a e. ( SubRng ` R ) -> a C_ B )
3 velpw
 |-  ( a e. ~P B <-> a C_ B )
4 2 3 sylibr
 |-  ( a e. ( SubRng ` R ) -> a e. ~P B )
5 4 a1i
 |-  ( R e. Rng -> ( a e. ( SubRng ` R ) -> a e. ~P B ) )
6 5 ssrdv
 |-  ( R e. Rng -> ( SubRng ` R ) C_ ~P B )
7 1 subrngid
 |-  ( R e. Rng -> B e. ( SubRng ` R ) )
8 subrngint
 |-  ( ( a C_ ( SubRng ` R ) /\ a =/= (/) ) -> |^| a e. ( SubRng ` R ) )
9 8 3adant1
 |-  ( ( R e. Rng /\ a C_ ( SubRng ` R ) /\ a =/= (/) ) -> |^| a e. ( SubRng ` R ) )
10 6 7 9 ismred
 |-  ( R e. Rng -> ( SubRng ` R ) e. ( Moore ` B ) )