Step |
Hyp |
Ref |
Expression |
1 |
|
subsubrng.s |
|- S = ( R |`s A ) |
2 |
|
subrngrcl |
|- ( A e. ( SubRng ` R ) -> R e. Rng ) |
3 |
2
|
adantr |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> R e. Rng ) |
4 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
5 |
4
|
subrngss |
|- ( B e. ( SubRng ` S ) -> B C_ ( Base ` S ) ) |
6 |
5
|
adantl |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B C_ ( Base ` S ) ) |
7 |
1
|
subrngbas |
|- ( A e. ( SubRng ` R ) -> A = ( Base ` S ) ) |
8 |
7
|
adantr |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> A = ( Base ` S ) ) |
9 |
6 8
|
sseqtrrd |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B C_ A ) |
10 |
1
|
oveq1i |
|- ( S |`s B ) = ( ( R |`s A ) |`s B ) |
11 |
|
ressabs |
|- ( ( A e. ( SubRng ` R ) /\ B C_ A ) -> ( ( R |`s A ) |`s B ) = ( R |`s B ) ) |
12 |
10 11
|
eqtrid |
|- ( ( A e. ( SubRng ` R ) /\ B C_ A ) -> ( S |`s B ) = ( R |`s B ) ) |
13 |
9 12
|
syldan |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( S |`s B ) = ( R |`s B ) ) |
14 |
|
eqid |
|- ( S |`s B ) = ( S |`s B ) |
15 |
14
|
subrngrng |
|- ( B e. ( SubRng ` S ) -> ( S |`s B ) e. Rng ) |
16 |
15
|
adantl |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( S |`s B ) e. Rng ) |
17 |
13 16
|
eqeltrrd |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( R |`s B ) e. Rng ) |
18 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
19 |
18
|
subrngss |
|- ( A e. ( SubRng ` R ) -> A C_ ( Base ` R ) ) |
20 |
19
|
adantr |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> A C_ ( Base ` R ) ) |
21 |
9 20
|
sstrd |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B C_ ( Base ` R ) ) |
22 |
18
|
issubrng |
|- ( B e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s B ) e. Rng /\ B C_ ( Base ` R ) ) ) |
23 |
3 17 21 22
|
syl3anbrc |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B e. ( SubRng ` R ) ) |
24 |
23 9
|
jca |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( B e. ( SubRng ` R ) /\ B C_ A ) ) |
25 |
1
|
subrngrng |
|- ( A e. ( SubRng ` R ) -> S e. Rng ) |
26 |
25
|
adantr |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> S e. Rng ) |
27 |
12
|
adantrl |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> ( S |`s B ) = ( R |`s B ) ) |
28 |
|
eqid |
|- ( R |`s B ) = ( R |`s B ) |
29 |
28
|
subrngrng |
|- ( B e. ( SubRng ` R ) -> ( R |`s B ) e. Rng ) |
30 |
29
|
ad2antrl |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> ( R |`s B ) e. Rng ) |
31 |
27 30
|
eqeltrd |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> ( S |`s B ) e. Rng ) |
32 |
|
simprr |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> B C_ A ) |
33 |
7
|
adantr |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> A = ( Base ` S ) ) |
34 |
32 33
|
sseqtrd |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> B C_ ( Base ` S ) ) |
35 |
4
|
issubrng |
|- ( B e. ( SubRng ` S ) <-> ( S e. Rng /\ ( S |`s B ) e. Rng /\ B C_ ( Base ` S ) ) ) |
36 |
26 31 34 35
|
syl3anbrc |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> B e. ( SubRng ` S ) ) |
37 |
24 36
|
impbida |
|- ( A e. ( SubRng ` R ) -> ( B e. ( SubRng ` S ) <-> ( B e. ( SubRng ` R ) /\ B C_ A ) ) ) |