| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsubrng.s | ⊢ 𝑆  =  ( 𝑅  ↾s  𝐴 ) | 
						
							| 2 |  | subrngrcl | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝑅  ∈  Rng ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑆 ) )  →  𝑅  ∈  Rng ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 5 | 4 | subrngss | ⊢ ( 𝐵  ∈  ( SubRng ‘ 𝑆 )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑆 ) )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 7 | 1 | subrngbas | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝐴  =  ( Base ‘ 𝑆 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑆 ) )  →  𝐴  =  ( Base ‘ 𝑆 ) ) | 
						
							| 9 | 6 8 | sseqtrrd | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑆 ) )  →  𝐵  ⊆  𝐴 ) | 
						
							| 10 | 1 | oveq1i | ⊢ ( 𝑆  ↾s  𝐵 )  =  ( ( 𝑅  ↾s  𝐴 )  ↾s  𝐵 ) | 
						
							| 11 |  | ressabs | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 )  →  ( ( 𝑅  ↾s  𝐴 )  ↾s  𝐵 )  =  ( 𝑅  ↾s  𝐵 ) ) | 
						
							| 12 | 10 11 | eqtrid | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 )  →  ( 𝑆  ↾s  𝐵 )  =  ( 𝑅  ↾s  𝐵 ) ) | 
						
							| 13 | 9 12 | syldan | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑆 ) )  →  ( 𝑆  ↾s  𝐵 )  =  ( 𝑅  ↾s  𝐵 ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑆  ↾s  𝐵 )  =  ( 𝑆  ↾s  𝐵 ) | 
						
							| 15 | 14 | subrngrng | ⊢ ( 𝐵  ∈  ( SubRng ‘ 𝑆 )  →  ( 𝑆  ↾s  𝐵 )  ∈  Rng ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑆 ) )  →  ( 𝑆  ↾s  𝐵 )  ∈  Rng ) | 
						
							| 17 | 13 16 | eqeltrrd | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑆 ) )  →  ( 𝑅  ↾s  𝐵 )  ∈  Rng ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 19 | 18 | subrngss | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝐴  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑆 ) )  →  𝐴  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 21 | 9 20 | sstrd | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑆 ) )  →  𝐵  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 22 | 18 | issubrng | ⊢ ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  ↔  ( 𝑅  ∈  Rng  ∧  ( 𝑅  ↾s  𝐵 )  ∈  Rng  ∧  𝐵  ⊆  ( Base ‘ 𝑅 ) ) ) | 
						
							| 23 | 3 17 21 22 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑆 ) )  →  𝐵  ∈  ( SubRng ‘ 𝑅 ) ) | 
						
							| 24 | 23 9 | jca | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRng ‘ 𝑆 ) )  →  ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) ) | 
						
							| 25 | 1 | subrngrng | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝑆  ∈  Rng ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  𝑆  ∈  Rng ) | 
						
							| 27 | 12 | adantrl | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  ( 𝑆  ↾s  𝐵 )  =  ( 𝑅  ↾s  𝐵 ) ) | 
						
							| 28 |  | eqid | ⊢ ( 𝑅  ↾s  𝐵 )  =  ( 𝑅  ↾s  𝐵 ) | 
						
							| 29 | 28 | subrngrng | ⊢ ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  →  ( 𝑅  ↾s  𝐵 )  ∈  Rng ) | 
						
							| 30 | 29 | ad2antrl | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  ( 𝑅  ↾s  𝐵 )  ∈  Rng ) | 
						
							| 31 | 27 30 | eqeltrd | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  ( 𝑆  ↾s  𝐵 )  ∈  Rng ) | 
						
							| 32 |  | simprr | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  𝐵  ⊆  𝐴 ) | 
						
							| 33 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  𝐴  =  ( Base ‘ 𝑆 ) ) | 
						
							| 34 | 32 33 | sseqtrd | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 35 | 4 | issubrng | ⊢ ( 𝐵  ∈  ( SubRng ‘ 𝑆 )  ↔  ( 𝑆  ∈  Rng  ∧  ( 𝑆  ↾s  𝐵 )  ∈  Rng  ∧  𝐵  ⊆  ( Base ‘ 𝑆 ) ) ) | 
						
							| 36 | 26 31 34 35 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  𝐵  ∈  ( SubRng ‘ 𝑆 ) ) | 
						
							| 37 | 24 36 | impbida | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  ( 𝐵  ∈  ( SubRng ‘ 𝑆 )  ↔  ( 𝐵  ∈  ( SubRng ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) ) ) |