Metamath Proof Explorer


Theorem subsubrng2

Description: The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypothesis subsubrng.s 𝑆 = ( 𝑅s 𝐴 )
Assertion subsubrng2 ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( SubRng ‘ 𝑆 ) = ( ( SubRng ‘ 𝑅 ) ∩ 𝒫 𝐴 ) )

Proof

Step Hyp Ref Expression
1 subsubrng.s 𝑆 = ( 𝑅s 𝐴 )
2 1 subsubrng ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( 𝑎 ∈ ( SubRng ‘ 𝑆 ) ↔ ( 𝑎 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑎𝐴 ) ) )
3 elin ( 𝑎 ∈ ( ( SubRng ‘ 𝑅 ) ∩ 𝒫 𝐴 ) ↔ ( 𝑎 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) )
4 velpw ( 𝑎 ∈ 𝒫 𝐴𝑎𝐴 )
5 4 anbi2i ( ( 𝑎 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ↔ ( 𝑎 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑎𝐴 ) )
6 3 5 bitr2i ( ( 𝑎 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑎𝐴 ) ↔ 𝑎 ∈ ( ( SubRng ‘ 𝑅 ) ∩ 𝒫 𝐴 ) )
7 2 6 bitrdi ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( 𝑎 ∈ ( SubRng ‘ 𝑆 ) ↔ 𝑎 ∈ ( ( SubRng ‘ 𝑅 ) ∩ 𝒫 𝐴 ) ) )
8 7 eqrdv ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( SubRng ‘ 𝑆 ) = ( ( SubRng ‘ 𝑅 ) ∩ 𝒫 𝐴 ) )