| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmimasubrnglem.b |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 2 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 4 |
3
|
subrngss |
⊢ ( 𝑋 ∈ ( SubRng ‘ 𝑅 ) → 𝑋 ⊆ ( Base ‘ 𝑅 ) ) |
| 5 |
1 3
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 6 |
4 5
|
sseqtrdi |
⊢ ( 𝑋 ∈ ( SubRng ‘ 𝑅 ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
| 9 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
| 10 |
8 9
|
sseldd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑧 ∈ ( Base ‘ 𝑀 ) ) |
| 11 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
| 12 |
8 11
|
sseldd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 15 |
|
eqid |
⊢ ( +g ‘ 𝑁 ) = ( +g ‘ 𝑁 ) |
| 16 |
13 14 15
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 |
2 10 12 16
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) |
| 19 |
13 18
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 21 |
20
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
| 23 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 24 |
1 23
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 25 |
24
|
eqcomi |
⊢ ( +g ‘ 𝑀 ) = ( .r ‘ 𝑅 ) |
| 26 |
25
|
subrngmcl |
⊢ ( ( 𝑋 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
| 27 |
26
|
3expb |
⊢ ( ( 𝑋 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
| 28 |
27
|
adantll |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
| 29 |
|
fnfvima |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ∧ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 30 |
22 8 28 29
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 31 |
17 30
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 32 |
31
|
anassrs |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 35 |
34
|
eleq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 36 |
35
|
ralima |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 37 |
21 7 36
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 39 |
33 38
|
mpbird |
⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑋 ) → ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 40 |
39
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 41 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ) |
| 42 |
41
|
eleq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 43 |
42
|
ralbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 44 |
43
|
ralima |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 45 |
21 7 44
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 46 |
40 45
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |