| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmghm | ⊢ ( 𝐹  ∈  ( 𝑀  RingHom  𝑁 )  →  𝐹  ∈  ( 𝑀  GrpHom  𝑁 ) ) | 
						
							| 2 |  | subrngsubg | ⊢ ( 𝑋  ∈  ( SubRng ‘ 𝑀 )  →  𝑋  ∈  ( SubGrp ‘ 𝑀 ) ) | 
						
							| 3 |  | ghmima | ⊢ ( ( 𝐹  ∈  ( 𝑀  GrpHom  𝑁 )  ∧  𝑋  ∈  ( SubGrp ‘ 𝑀 ) )  →  ( 𝐹  “  𝑋 )  ∈  ( SubGrp ‘ 𝑁 ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑀  RingHom  𝑁 )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  →  ( 𝐹  “  𝑋 )  ∈  ( SubGrp ‘ 𝑁 ) ) | 
						
							| 5 |  | eqid | ⊢ ( mulGrp ‘ 𝑀 )  =  ( mulGrp ‘ 𝑀 ) | 
						
							| 6 |  | eqid | ⊢ ( mulGrp ‘ 𝑁 )  =  ( mulGrp ‘ 𝑁 ) | 
						
							| 7 | 5 6 | rhmmhm | ⊢ ( 𝐹  ∈  ( 𝑀  RingHom  𝑁 )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑀 )  MndHom  ( mulGrp ‘ 𝑁 ) ) ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝐹  ∈  ( ( mulGrp ‘ 𝑀 )  MndHom  ( mulGrp ‘ 𝑁 ) )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑀 )  MndHom  ( mulGrp ‘ 𝑁 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 10 | 5 9 | mgpbas | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ ( mulGrp ‘ 𝑀 ) ) | 
						
							| 11 | 10 | eqcomi | ⊢ ( Base ‘ ( mulGrp ‘ 𝑀 ) )  =  ( Base ‘ 𝑀 ) | 
						
							| 12 | 11 | subrngss | ⊢ ( 𝑋  ∈  ( SubRng ‘ 𝑀 )  →  𝑋  ⊆  ( Base ‘ ( mulGrp ‘ 𝑀 ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐹  ∈  ( ( mulGrp ‘ 𝑀 )  MndHom  ( mulGrp ‘ 𝑁 ) )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  →  𝑋  ⊆  ( Base ‘ ( mulGrp ‘ 𝑀 ) ) ) | 
						
							| 14 |  | eqidd | ⊢ ( ( 𝐹  ∈  ( ( mulGrp ‘ 𝑀 )  MndHom  ( mulGrp ‘ 𝑁 ) )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  →  ( +g ‘ ( mulGrp ‘ 𝑀 ) )  =  ( +g ‘ ( mulGrp ‘ 𝑀 ) ) ) | 
						
							| 15 |  | eqidd | ⊢ ( ( 𝐹  ∈  ( ( mulGrp ‘ 𝑀 )  MndHom  ( mulGrp ‘ 𝑁 ) )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  →  ( +g ‘ ( mulGrp ‘ 𝑁 ) )  =  ( +g ‘ ( mulGrp ‘ 𝑁 ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( .r ‘ 𝑀 )  =  ( .r ‘ 𝑀 ) | 
						
							| 17 | 5 16 | mgpplusg | ⊢ ( .r ‘ 𝑀 )  =  ( +g ‘ ( mulGrp ‘ 𝑀 ) ) | 
						
							| 18 | 17 | eqcomi | ⊢ ( +g ‘ ( mulGrp ‘ 𝑀 ) )  =  ( .r ‘ 𝑀 ) | 
						
							| 19 | 18 | subrngmcl | ⊢ ( ( 𝑋  ∈  ( SubRng ‘ 𝑀 )  ∧  𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( 𝑧 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑥 )  ∈  𝑋 ) | 
						
							| 20 | 19 | 3adant1l | ⊢ ( ( ( 𝐹  ∈  ( ( mulGrp ‘ 𝑀 )  MndHom  ( mulGrp ‘ 𝑁 ) )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  ∧  𝑧  ∈  𝑋  ∧  𝑥  ∈  𝑋 )  →  ( 𝑧 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑥 )  ∈  𝑋 ) | 
						
							| 21 | 8 13 14 15 20 | mhmimalem | ⊢ ( ( 𝐹  ∈  ( ( mulGrp ‘ 𝑀 )  MndHom  ( mulGrp ‘ 𝑁 ) )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 22 |  | eqid | ⊢ ( .r ‘ 𝑁 )  =  ( .r ‘ 𝑁 ) | 
						
							| 23 | 6 22 | mgpplusg | ⊢ ( .r ‘ 𝑁 )  =  ( +g ‘ ( mulGrp ‘ 𝑁 ) ) | 
						
							| 24 | 23 | eqcomi | ⊢ ( +g ‘ ( mulGrp ‘ 𝑁 ) )  =  ( .r ‘ 𝑁 ) | 
						
							| 25 | 24 | oveqi | ⊢ ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 ) | 
						
							| 26 | 25 | eleq1i | ⊢ ( ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 27 | 26 | 2ralbii | ⊢ ( ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑁 ) ) 𝑦 )  ∈  ( 𝐹  “  𝑋 )  ↔  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 28 | 21 27 | sylib | ⊢ ( ( 𝐹  ∈  ( ( mulGrp ‘ 𝑀 )  MndHom  ( mulGrp ‘ 𝑁 ) )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 29 | 7 28 | sylan | ⊢ ( ( 𝐹  ∈  ( 𝑀  RingHom  𝑁 )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  →  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) | 
						
							| 30 |  | rhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝑀  RingHom  𝑁 )  →  𝑁  ∈  Ring ) | 
						
							| 31 |  | ringrng | ⊢ ( 𝑁  ∈  Ring  →  𝑁  ∈  Rng ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝐹  ∈  ( 𝑀  RingHom  𝑁 )  →  𝑁  ∈  Rng ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑀  RingHom  𝑁 )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  →  𝑁  ∈  Rng ) | 
						
							| 34 |  | eqid | ⊢ ( Base ‘ 𝑁 )  =  ( Base ‘ 𝑁 ) | 
						
							| 35 | 34 22 | issubrng2 | ⊢ ( 𝑁  ∈  Rng  →  ( ( 𝐹  “  𝑋 )  ∈  ( SubRng ‘ 𝑁 )  ↔  ( ( 𝐹  “  𝑋 )  ∈  ( SubGrp ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) ) ) | 
						
							| 36 | 33 35 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑀  RingHom  𝑁 )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  →  ( ( 𝐹  “  𝑋 )  ∈  ( SubRng ‘ 𝑁 )  ↔  ( ( 𝐹  “  𝑋 )  ∈  ( SubGrp ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  ( 𝐹  “  𝑋 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑋 ) ( 𝑥 ( .r ‘ 𝑁 ) 𝑦 )  ∈  ( 𝐹  “  𝑋 ) ) ) ) | 
						
							| 37 | 4 29 36 | mpbir2and | ⊢ ( ( 𝐹  ∈  ( 𝑀  RingHom  𝑁 )  ∧  𝑋  ∈  ( SubRng ‘ 𝑀 ) )  →  ( 𝐹  “  𝑋 )  ∈  ( SubRng ‘ 𝑁 ) ) |