| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmghm |  |-  ( F e. ( M RingHom N ) -> F e. ( M GrpHom N ) ) | 
						
							| 2 |  | subrngsubg |  |-  ( X e. ( SubRng ` M ) -> X e. ( SubGrp ` M ) ) | 
						
							| 3 |  | ghmima |  |-  ( ( F e. ( M GrpHom N ) /\ X e. ( SubGrp ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) | 
						
							| 5 |  | eqid |  |-  ( mulGrp ` M ) = ( mulGrp ` M ) | 
						
							| 6 |  | eqid |  |-  ( mulGrp ` N ) = ( mulGrp ` N ) | 
						
							| 7 | 5 6 | rhmmhm |  |-  ( F e. ( M RingHom N ) -> F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) ) | 
						
							| 8 |  | simpl |  |-  ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 10 | 5 9 | mgpbas |  |-  ( Base ` M ) = ( Base ` ( mulGrp ` M ) ) | 
						
							| 11 | 10 | eqcomi |  |-  ( Base ` ( mulGrp ` M ) ) = ( Base ` M ) | 
						
							| 12 | 11 | subrngss |  |-  ( X e. ( SubRng ` M ) -> X C_ ( Base ` ( mulGrp ` M ) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> X C_ ( Base ` ( mulGrp ` M ) ) ) | 
						
							| 14 |  | eqidd |  |-  ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> ( +g ` ( mulGrp ` M ) ) = ( +g ` ( mulGrp ` M ) ) ) | 
						
							| 15 |  | eqidd |  |-  ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> ( +g ` ( mulGrp ` N ) ) = ( +g ` ( mulGrp ` N ) ) ) | 
						
							| 16 |  | eqid |  |-  ( .r ` M ) = ( .r ` M ) | 
						
							| 17 | 5 16 | mgpplusg |  |-  ( .r ` M ) = ( +g ` ( mulGrp ` M ) ) | 
						
							| 18 | 17 | eqcomi |  |-  ( +g ` ( mulGrp ` M ) ) = ( .r ` M ) | 
						
							| 19 | 18 | subrngmcl |  |-  ( ( X e. ( SubRng ` M ) /\ z e. X /\ x e. X ) -> ( z ( +g ` ( mulGrp ` M ) ) x ) e. X ) | 
						
							| 20 | 19 | 3adant1l |  |-  ( ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) /\ z e. X /\ x e. X ) -> ( z ( +g ` ( mulGrp ` M ) ) x ) e. X ) | 
						
							| 21 | 8 13 14 15 20 | mhmimalem |  |-  ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` ( mulGrp ` N ) ) y ) e. ( F " X ) ) | 
						
							| 22 |  | eqid |  |-  ( .r ` N ) = ( .r ` N ) | 
						
							| 23 | 6 22 | mgpplusg |  |-  ( .r ` N ) = ( +g ` ( mulGrp ` N ) ) | 
						
							| 24 | 23 | eqcomi |  |-  ( +g ` ( mulGrp ` N ) ) = ( .r ` N ) | 
						
							| 25 | 24 | oveqi |  |-  ( x ( +g ` ( mulGrp ` N ) ) y ) = ( x ( .r ` N ) y ) | 
						
							| 26 | 25 | eleq1i |  |-  ( ( x ( +g ` ( mulGrp ` N ) ) y ) e. ( F " X ) <-> ( x ( .r ` N ) y ) e. ( F " X ) ) | 
						
							| 27 | 26 | 2ralbii |  |-  ( A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` ( mulGrp ` N ) ) y ) e. ( F " X ) <-> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) | 
						
							| 28 | 21 27 | sylib |  |-  ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) | 
						
							| 29 | 7 28 | sylan |  |-  ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) | 
						
							| 30 |  | rhmrcl2 |  |-  ( F e. ( M RingHom N ) -> N e. Ring ) | 
						
							| 31 |  | ringrng |  |-  ( N e. Ring -> N e. Rng ) | 
						
							| 32 | 30 31 | syl |  |-  ( F e. ( M RingHom N ) -> N e. Rng ) | 
						
							| 33 | 32 | adantr |  |-  ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> N e. Rng ) | 
						
							| 34 |  | eqid |  |-  ( Base ` N ) = ( Base ` N ) | 
						
							| 35 | 34 22 | issubrng2 |  |-  ( N e. Rng -> ( ( F " X ) e. ( SubRng ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) ) ) | 
						
							| 36 | 33 35 | syl |  |-  ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( ( F " X ) e. ( SubRng ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) ) ) | 
						
							| 37 | 4 29 36 | mpbir2and |  |-  ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubRng ` N ) ) |