| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhmimalem.f |
|- ( ph -> F e. ( M MndHom N ) ) |
| 2 |
|
mhmimalem.s |
|- ( ph -> X C_ ( Base ` M ) ) |
| 3 |
|
mhmimalem.a |
|- ( ph -> .(+) = ( +g ` M ) ) |
| 4 |
|
mhmimalem.p |
|- ( ph -> .+ = ( +g ` N ) ) |
| 5 |
|
mhmimalem.c |
|- ( ( ph /\ z e. X /\ x e. X ) -> ( z .(+) x ) e. X ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> F e. ( M MndHom N ) ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> X C_ ( Base ` M ) ) |
| 8 |
|
simprl |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> z e. X ) |
| 9 |
7 8
|
sseldd |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> z e. ( Base ` M ) ) |
| 10 |
|
simprr |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> x e. X ) |
| 11 |
7 10
|
sseldd |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> x e. ( Base ` M ) ) |
| 12 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 13 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 14 |
|
eqid |
|- ( +g ` N ) = ( +g ` N ) |
| 15 |
12 13 14
|
mhmlin |
|- ( ( F e. ( M MndHom N ) /\ z e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
| 16 |
6 9 11 15
|
syl3anc |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
| 17 |
3
|
oveqd |
|- ( ph -> ( z .(+) x ) = ( z ( +g ` M ) x ) ) |
| 18 |
17
|
fveq2d |
|- ( ph -> ( F ` ( z .(+) x ) ) = ( F ` ( z ( +g ` M ) x ) ) ) |
| 19 |
4
|
oveqd |
|- ( ph -> ( ( F ` z ) .+ ( F ` x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
| 20 |
18 19
|
eqeq12d |
|- ( ph -> ( ( F ` ( z .(+) x ) ) = ( ( F ` z ) .+ ( F ` x ) ) <-> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( ( F ` ( z .(+) x ) ) = ( ( F ` z ) .+ ( F ` x ) ) <-> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) ) |
| 22 |
16 21
|
mpbird |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z .(+) x ) ) = ( ( F ` z ) .+ ( F ` x ) ) ) |
| 23 |
|
eqid |
|- ( Base ` N ) = ( Base ` N ) |
| 24 |
12 23
|
mhmf |
|- ( F e. ( M MndHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 25 |
1 24
|
syl |
|- ( ph -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 26 |
25
|
ffnd |
|- ( ph -> F Fn ( Base ` M ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> F Fn ( Base ` M ) ) |
| 28 |
5
|
3expb |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( z .(+) x ) e. X ) |
| 29 |
|
fnfvima |
|- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) /\ ( z .(+) x ) e. X ) -> ( F ` ( z .(+) x ) ) e. ( F " X ) ) |
| 30 |
27 7 28 29
|
syl3anc |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z .(+) x ) ) e. ( F " X ) ) |
| 31 |
22 30
|
eqeltrrd |
|- ( ( ph /\ ( z e. X /\ x e. X ) ) -> ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) |
| 32 |
31
|
anassrs |
|- ( ( ( ph /\ z e. X ) /\ x e. X ) -> ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) |
| 33 |
32
|
ralrimiva |
|- ( ( ph /\ z e. X ) -> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) |
| 34 |
|
oveq2 |
|- ( y = ( F ` x ) -> ( ( F ` z ) .+ y ) = ( ( F ` z ) .+ ( F ` x ) ) ) |
| 35 |
34
|
eleq1d |
|- ( y = ( F ` x ) -> ( ( ( F ` z ) .+ y ) e. ( F " X ) <-> ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) |
| 36 |
35
|
ralima |
|- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) ) -> ( A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) |
| 37 |
26 2 36
|
syl2anc |
|- ( ph -> ( A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ z e. X ) -> ( A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) .+ ( F ` x ) ) e. ( F " X ) ) ) |
| 39 |
33 38
|
mpbird |
|- ( ( ph /\ z e. X ) -> A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) |
| 40 |
39
|
ralrimiva |
|- ( ph -> A. z e. X A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) |
| 41 |
|
oveq1 |
|- ( x = ( F ` z ) -> ( x .+ y ) = ( ( F ` z ) .+ y ) ) |
| 42 |
41
|
eleq1d |
|- ( x = ( F ` z ) -> ( ( x .+ y ) e. ( F " X ) <-> ( ( F ` z ) .+ y ) e. ( F " X ) ) ) |
| 43 |
42
|
ralbidv |
|- ( x = ( F ` z ) -> ( A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) <-> A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) ) |
| 44 |
43
|
ralima |
|- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) ) -> ( A. x e. ( F " X ) A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) <-> A. z e. X A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) ) |
| 45 |
26 2 44
|
syl2anc |
|- ( ph -> ( A. x e. ( F " X ) A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) <-> A. z e. X A. y e. ( F " X ) ( ( F ` z ) .+ y ) e. ( F " X ) ) ) |
| 46 |
40 45
|
mpbird |
|- ( ph -> A. x e. ( F " X ) A. y e. ( F " X ) ( x .+ y ) e. ( F " X ) ) |