| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntzsubrng.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | cntzsubrng.m |  |-  M = ( mulGrp ` R ) | 
						
							| 3 |  | cntzsubrng.z |  |-  Z = ( Cntz ` M ) | 
						
							| 4 | 2 1 | mgpbas |  |-  B = ( Base ` M ) | 
						
							| 5 | 4 3 | cntzssv |  |-  ( Z ` S ) C_ B | 
						
							| 6 | 5 | a1i |  |-  ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) C_ B ) | 
						
							| 7 |  | simpll |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> R e. Rng ) | 
						
							| 8 |  | ssel2 |  |-  ( ( S C_ B /\ z e. S ) -> z e. B ) | 
						
							| 9 | 8 | adantll |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> z e. B ) | 
						
							| 10 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 11 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 12 | 1 10 11 | rnglz |  |-  ( ( R e. Rng /\ z e. B ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( 0g ` R ) ) | 
						
							| 13 | 7 9 12 | syl2anc |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( 0g ` R ) ) | 
						
							| 14 | 1 10 11 | rngrz |  |-  ( ( R e. Rng /\ z e. B ) -> ( z ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 15 | 7 9 14 | syl2anc |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> ( z ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 16 | 13 15 | eqtr4d |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) | 
						
							| 17 | 16 | ralrimiva |  |-  ( ( R e. Rng /\ S C_ B ) -> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) | 
						
							| 18 |  | simpr |  |-  ( ( R e. Rng /\ S C_ B ) -> S C_ B ) | 
						
							| 19 | 1 11 | rng0cl |  |-  ( R e. Rng -> ( 0g ` R ) e. B ) | 
						
							| 20 | 19 | adantr |  |-  ( ( R e. Rng /\ S C_ B ) -> ( 0g ` R ) e. B ) | 
						
							| 21 | 2 10 | mgpplusg |  |-  ( .r ` R ) = ( +g ` M ) | 
						
							| 22 | 4 21 3 | cntzel |  |-  ( ( S C_ B /\ ( 0g ` R ) e. B ) -> ( ( 0g ` R ) e. ( Z ` S ) <-> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) ) | 
						
							| 23 | 18 20 22 | syl2anc |  |-  ( ( R e. Rng /\ S C_ B ) -> ( ( 0g ` R ) e. ( Z ` S ) <-> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) ) | 
						
							| 24 | 17 23 | mpbird |  |-  ( ( R e. Rng /\ S C_ B ) -> ( 0g ` R ) e. ( Z ` S ) ) | 
						
							| 25 | 24 | ne0d |  |-  ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) =/= (/) ) | 
						
							| 26 |  | simpl2 |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> x e. ( Z ` S ) ) | 
						
							| 27 | 21 3 | cntzi |  |-  ( ( x e. ( Z ` S ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) | 
						
							| 28 | 26 27 | sylancom |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) | 
						
							| 29 |  | simpl3 |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> y e. ( Z ` S ) ) | 
						
							| 30 | 21 3 | cntzi |  |-  ( ( y e. ( Z ` S ) /\ z e. S ) -> ( y ( .r ` R ) z ) = ( z ( .r ` R ) y ) ) | 
						
							| 31 | 29 30 | sylancom |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( y ( .r ` R ) z ) = ( z ( .r ` R ) y ) ) | 
						
							| 32 | 28 31 | oveq12d |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) | 
						
							| 33 |  | simpl1l |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> R e. Rng ) | 
						
							| 34 | 5 26 | sselid |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> x e. B ) | 
						
							| 35 | 5 29 | sselid |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> y e. B ) | 
						
							| 36 |  | simp1r |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> S C_ B ) | 
						
							| 37 | 36 | sselda |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> z e. B ) | 
						
							| 38 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 39 | 1 38 10 | rngdir |  |-  ( ( R e. Rng /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) | 
						
							| 40 | 33 34 35 37 39 | syl13anc |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) | 
						
							| 41 | 1 38 10 | rngdi |  |-  ( ( R e. Rng /\ ( z e. B /\ x e. B /\ y e. B ) ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) | 
						
							| 42 | 33 37 34 35 41 | syl13anc |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) | 
						
							| 43 | 32 40 42 | 3eqtr4d |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) | 
						
							| 44 | 43 | ralrimiva |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) | 
						
							| 45 |  | simp1l |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> R e. Rng ) | 
						
							| 46 |  | simp2 |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> x e. ( Z ` S ) ) | 
						
							| 47 | 5 46 | sselid |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> x e. B ) | 
						
							| 48 |  | simp3 |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> y e. ( Z ` S ) ) | 
						
							| 49 | 5 48 | sselid |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> y e. B ) | 
						
							| 50 | 1 38 | rngacl |  |-  ( ( R e. Rng /\ x e. B /\ y e. B ) -> ( x ( +g ` R ) y ) e. B ) | 
						
							| 51 | 45 47 49 50 | syl3anc |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. B ) | 
						
							| 52 | 4 21 3 | cntzel |  |-  ( ( S C_ B /\ ( x ( +g ` R ) y ) e. B ) -> ( ( x ( +g ` R ) y ) e. ( Z ` S ) <-> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) ) | 
						
							| 53 | 36 51 52 | syl2anc |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( ( x ( +g ` R ) y ) e. ( Z ` S ) <-> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) ) | 
						
							| 54 | 44 53 | mpbird |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. ( Z ` S ) ) | 
						
							| 55 | 54 | 3expa |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. ( Z ` S ) ) | 
						
							| 56 | 55 | ralrimiva |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) ) | 
						
							| 57 | 27 | adantll |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) | 
						
							| 58 | 57 | fveq2d |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( invg ` R ) ` ( x ( .r ` R ) z ) ) = ( ( invg ` R ) ` ( z ( .r ` R ) x ) ) ) | 
						
							| 59 |  | eqid |  |-  ( invg ` R ) = ( invg ` R ) | 
						
							| 60 |  | simplll |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> R e. Rng ) | 
						
							| 61 |  | simplr |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> x e. ( Z ` S ) ) | 
						
							| 62 | 5 61 | sselid |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> x e. B ) | 
						
							| 63 |  | simplr |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> S C_ B ) | 
						
							| 64 | 63 | sselda |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> z e. B ) | 
						
							| 65 | 1 10 59 60 62 64 | rngmneg1 |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( ( invg ` R ) ` ( x ( .r ` R ) z ) ) ) | 
						
							| 66 | 1 10 59 60 64 62 | rngmneg2 |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) = ( ( invg ` R ) ` ( z ( .r ` R ) x ) ) ) | 
						
							| 67 | 58 65 66 | 3eqtr4d |  |-  ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) | 
						
							| 68 | 67 | ralrimiva |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) | 
						
							| 69 |  | rnggrp |  |-  ( R e. Rng -> R e. Grp ) | 
						
							| 70 | 69 | ad2antrr |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> R e. Grp ) | 
						
							| 71 |  | simpr |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> x e. ( Z ` S ) ) | 
						
							| 72 | 5 71 | sselid |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> x e. B ) | 
						
							| 73 | 1 59 70 72 | grpinvcld |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( invg ` R ) ` x ) e. B ) | 
						
							| 74 | 4 21 3 | cntzel |  |-  ( ( S C_ B /\ ( ( invg ` R ) ` x ) e. B ) -> ( ( ( invg ` R ) ` x ) e. ( Z ` S ) <-> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) ) | 
						
							| 75 | 63 73 74 | syl2anc |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( ( invg ` R ) ` x ) e. ( Z ` S ) <-> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) ) | 
						
							| 76 | 68 75 | mpbird |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( invg ` R ) ` x ) e. ( Z ` S ) ) | 
						
							| 77 | 56 76 | jca |  |-  ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) | 
						
							| 78 | 77 | ralrimiva |  |-  ( ( R e. Rng /\ S C_ B ) -> A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) | 
						
							| 79 | 69 | adantr |  |-  ( ( R e. Rng /\ S C_ B ) -> R e. Grp ) | 
						
							| 80 | 1 38 59 | issubg2 |  |-  ( R e. Grp -> ( ( Z ` S ) e. ( SubGrp ` R ) <-> ( ( Z ` S ) C_ B /\ ( Z ` S ) =/= (/) /\ A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) ) ) | 
						
							| 81 | 79 80 | syl |  |-  ( ( R e. Rng /\ S C_ B ) -> ( ( Z ` S ) e. ( SubGrp ` R ) <-> ( ( Z ` S ) C_ B /\ ( Z ` S ) =/= (/) /\ A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) ) ) | 
						
							| 82 | 6 25 78 81 | mpbir3and |  |-  ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubGrp ` R ) ) | 
						
							| 83 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 84 | 83 | rngmgp |  |-  ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) | 
						
							| 85 | 83 1 | mgpbas |  |-  B = ( Base ` ( mulGrp ` R ) ) | 
						
							| 86 | 85 | sseq2i |  |-  ( S C_ B <-> S C_ ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 87 | 86 | biimpi |  |-  ( S C_ B -> S C_ ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 88 |  | eqid |  |-  ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 89 | 2 | fveq2i |  |-  ( Cntz ` M ) = ( Cntz ` ( mulGrp ` R ) ) | 
						
							| 90 | 3 89 | eqtri |  |-  Z = ( Cntz ` ( mulGrp ` R ) ) | 
						
							| 91 |  | eqid |  |-  ( Z ` S ) = ( Z ` S ) | 
						
							| 92 | 88 90 91 | cntzsgrpcl |  |-  ( ( ( mulGrp ` R ) e. Smgrp /\ S C_ ( Base ` ( mulGrp ` R ) ) ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) | 
						
							| 93 | 84 87 92 | syl2an |  |-  ( ( R e. Rng /\ S C_ B ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) | 
						
							| 94 | 83 10 | mgpplusg |  |-  ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) | 
						
							| 95 | 94 | oveqi |  |-  ( x ( .r ` R ) y ) = ( x ( +g ` ( mulGrp ` R ) ) y ) | 
						
							| 96 | 95 | eleq1i |  |-  ( ( x ( .r ` R ) y ) e. ( Z ` S ) <-> ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) | 
						
							| 97 | 96 | 2ralbii |  |-  ( A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) <-> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) | 
						
							| 98 | 93 97 | sylibr |  |-  ( ( R e. Rng /\ S C_ B ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) | 
						
							| 99 | 1 10 | issubrng2 |  |-  ( R e. Rng -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) | 
						
							| 100 | 99 | adantr |  |-  ( ( R e. Rng /\ S C_ B ) -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) | 
						
							| 101 | 82 98 100 | mpbir2and |  |-  ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubRng ` R ) ) |