| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntzsubrng.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | cntzsubrng.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 3 |  | cntzsubrng.z | ⊢ 𝑍  =  ( Cntz ‘ 𝑀 ) | 
						
							| 4 | 2 1 | mgpbas | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 5 | 4 3 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 )  ⊆  𝐵 | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  ⊆  𝐵 ) | 
						
							| 7 |  | simpll | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑧  ∈  𝑆 )  →  𝑅  ∈  Rng ) | 
						
							| 8 |  | ssel2 | ⊢ ( ( 𝑆  ⊆  𝐵  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝐵 ) | 
						
							| 9 | 8 | adantll | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 12 | 1 10 11 | rnglz | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑧  ∈  𝐵 )  →  ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 13 | 7 9 12 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑧  ∈  𝑆 )  →  ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 14 | 1 10 11 | rngrz | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑧  ∈  𝐵 )  →  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 15 | 7 9 14 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 16 | 13 15 | eqtr4d | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑧  ∈  𝑆 )  →  ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) | 
						
							| 17 | 16 | ralrimiva | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑧  ∈  𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  𝑆  ⊆  𝐵 ) | 
						
							| 19 | 1 11 | rng0cl | ⊢ ( 𝑅  ∈  Rng  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 21 | 2 10 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ 𝑀 ) | 
						
							| 22 | 4 21 3 | cntzel | ⊢ ( ( 𝑆  ⊆  𝐵  ∧  ( 0g ‘ 𝑅 )  ∈  𝐵 )  →  ( ( 0g ‘ 𝑅 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 23 | 18 20 22 | syl2anc | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( ( 0g ‘ 𝑅 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 24 | 17 23 | mpbird | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 0g ‘ 𝑅 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 25 | 24 | ne0d | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  ≠  ∅ ) | 
						
							| 26 |  | simpl2 | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 27 | 21 3 | cntzi | ⊢ ( ( 𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 28 | 26 27 | sylancom | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 29 |  | simpl3 | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 30 | 21 3 | cntzi | ⊢ ( ( 𝑦  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 31 | 29 30 | sylancom | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 32 | 28 31 | oveq12d | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) | 
						
							| 33 |  | simpl1l | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑅  ∈  Rng ) | 
						
							| 34 | 5 26 | sselid | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑥  ∈  𝐵 ) | 
						
							| 35 | 5 29 | sselid | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑦  ∈  𝐵 ) | 
						
							| 36 |  | simp1r | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑆  ⊆  𝐵 ) | 
						
							| 37 | 36 | sselda | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝐵 ) | 
						
							| 38 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 39 | 1 38 10 | rngdir | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 40 | 33 34 35 37 39 | syl13anc | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 41 | 1 38 10 | rngdi | ⊢ ( ( 𝑅  ∈  Rng  ∧  ( 𝑧  ∈  𝐵  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) | 
						
							| 42 | 33 37 34 35 41 | syl13anc | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) | 
						
							| 43 | 32 40 42 | 3eqtr4d | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) | 
						
							| 44 | 43 | ralrimiva | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ∀ 𝑧  ∈  𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) | 
						
							| 45 |  | simp1l | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑅  ∈  Rng ) | 
						
							| 46 |  | simp2 | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 47 | 5 46 | sselid | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 48 |  | simp3 | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 49 | 5 48 | sselid | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 50 | 1 38 | rngacl | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 51 | 45 47 49 50 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 52 | 4 21 3 | cntzel | ⊢ ( ( 𝑆  ⊆  𝐵  ∧  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  𝐵 )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) | 
						
							| 53 | 36 51 52 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) ) | 
						
							| 54 | 44 53 | mpbird | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 55 | 54 | 3expa | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑦  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 56 | 55 | ralrimiva | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 57 | 27 | adantll | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  =  ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 59 |  | eqid | ⊢ ( invg ‘ 𝑅 )  =  ( invg ‘ 𝑅 ) | 
						
							| 60 |  | simplll | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑅  ∈  Rng ) | 
						
							| 61 |  | simplr | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 62 | 5 61 | sselid | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑥  ∈  𝐵 ) | 
						
							| 63 |  | simplr | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑆  ⊆  𝐵 ) | 
						
							| 64 | 63 | sselda | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝐵 ) | 
						
							| 65 | 1 10 59 60 62 64 | rngmneg1 | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 66 | 1 10 59 60 64 62 | rngmneg2 | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) )  =  ( ( invg ‘ 𝑅 ) ‘ ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 67 | 58 65 66 | 3eqtr4d | ⊢ ( ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  ∧  𝑧  ∈  𝑆 )  →  ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) | 
						
							| 68 | 67 | ralrimiva | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ∀ 𝑧  ∈  𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) | 
						
							| 69 |  | rnggrp | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Grp ) | 
						
							| 70 | 69 | ad2antrr | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑅  ∈  Grp ) | 
						
							| 71 |  | simpr | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 72 | 5 71 | sselid | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 73 | 1 59 70 72 | grpinvcld | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 74 | 4 21 3 | cntzel | ⊢ ( ( 𝑆  ⊆  𝐵  ∧  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  𝐵 )  →  ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) | 
						
							| 75 | 63 73 74 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑧  ∈  𝑆 ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( 𝑧 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) | 
						
							| 76 | 68 75 | mpbird | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 77 | 56 76 | jca | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  ∧  𝑥  ∈  ( 𝑍 ‘ 𝑆 ) )  →  ( ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ∧  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) | 
						
							| 78 | 77 | ralrimiva | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ∧  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) | 
						
							| 79 | 69 | adantr | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  𝑅  ∈  Grp ) | 
						
							| 80 | 1 38 59 | issubg2 | ⊢ ( 𝑅  ∈  Grp  →  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubGrp ‘ 𝑅 )  ↔  ( ( 𝑍 ‘ 𝑆 )  ⊆  𝐵  ∧  ( 𝑍 ‘ 𝑆 )  ≠  ∅  ∧  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ∧  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) ) ) | 
						
							| 81 | 79 80 | syl | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubGrp ‘ 𝑅 )  ↔  ( ( 𝑍 ‘ 𝑆 )  ⊆  𝐵  ∧  ( 𝑍 ‘ 𝑆 )  ≠  ∅  ∧  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ( ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ∧  ( ( invg ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) ) ) | 
						
							| 82 | 6 25 78 81 | mpbir3and | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 83 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 84 | 83 | rngmgp | ⊢ ( 𝑅  ∈  Rng  →  ( mulGrp ‘ 𝑅 )  ∈  Smgrp ) | 
						
							| 85 | 83 1 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 86 | 85 | sseq2i | ⊢ ( 𝑆  ⊆  𝐵  ↔  𝑆  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 87 | 86 | biimpi | ⊢ ( 𝑆  ⊆  𝐵  →  𝑆  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 88 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 89 | 2 | fveq2i | ⊢ ( Cntz ‘ 𝑀 )  =  ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 90 | 3 89 | eqtri | ⊢ 𝑍  =  ( Cntz ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 91 |  | eqid | ⊢ ( 𝑍 ‘ 𝑆 )  =  ( 𝑍 ‘ 𝑆 ) | 
						
							| 92 | 88 90 91 | cntzsgrpcl | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ∈  Smgrp  ∧  𝑆  ⊆  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) )  →  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 93 | 84 87 92 | syl2an | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 94 | 83 10 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 95 | 94 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 ) | 
						
							| 96 | 95 | eleq1i | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 97 | 96 | 2ralbii | ⊢ ( ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 98 | 93 97 | sylibr | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) | 
						
							| 99 | 1 10 | issubrng2 | ⊢ ( 𝑅  ∈  Rng  →  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubRng ‘ 𝑅 )  ↔  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) ) | 
						
							| 100 | 99 | adantr | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubRng ‘ 𝑅 )  ↔  ( ( 𝑍 ‘ 𝑆 )  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  ( 𝑍 ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝑍 ‘ 𝑆 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ( 𝑍 ‘ 𝑆 ) ) ) ) | 
						
							| 101 | 82 98 100 | mpbir2and | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑍 ‘ 𝑆 )  ∈  ( SubRng ‘ 𝑅 ) ) |