Metamath Proof Explorer


Theorem subrval

Description: Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion subrval ACBDA-rB=vAvBv

Proof

Step Hyp Ref Expression
1 elex ACAV
2 elex BDBV
3 fveq1 x=Axv=Av
4 fveq1 y=Byv=Bv
5 3 4 oveqan12d x=Ay=Bxvyv=AvBv
6 5 mpteq2dv x=Ay=Bvxvyv=vAvBv
7 df-subr -r=xV,yVvxvyv
8 reex V
9 8 mptex vAvBvV
10 6 7 9 ovmpoa AVBVA-rB=vAvBv
11 1 2 10 syl2an ACBDA-rB=vAvBv