Metamath Proof Explorer


Theorem subscan2d

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses subscand.1 φ A No
subscand.2 φ B No
subscand.3 φ C No
Assertion subscan2d φ A - s C = B - s C A = B

Proof

Step Hyp Ref Expression
1 subscand.1 φ A No
2 subscand.2 φ B No
3 subscand.3 φ C No
4 1 3 subsvald φ A - s C = A + s + s C
5 2 3 subsvald φ B - s C = B + s + s C
6 4 5 eqeq12d φ A - s C = B - s C A + s + s C = B + s + s C
7 3 negscld φ + s C No
8 1 2 7 addscan2d φ A + s + s C = B + s + s C A = B
9 6 8 bitrd φ A - s C = B - s C A = B