Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
subsub3
Next ⟩
subsub4
Metamath Proof Explorer
Ascii
Unicode
Theorem
subsub3
Description:
Law for double subtraction.
(Contributed by
NM
, 27-Jul-2005)
Ref
Expression
Assertion
subsub3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
−
C
=
A
+
C
-
B
Proof
Step
Hyp
Ref
Expression
1
subsub2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
−
C
=
A
+
C
-
B
2
addsubass
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
→
A
+
C
-
B
=
A
+
C
-
B
3
2
3com23
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
+
C
-
B
=
A
+
C
-
B
4
1
3
eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
−
C
=
A
+
C
-
B