Metamath Proof Explorer


Theorem subsub3

Description: Law for double subtraction. (Contributed by NM, 27-Jul-2005)

Ref Expression
Assertion subsub3 A B C A B C = A + C - B

Proof

Step Hyp Ref Expression
1 subsub2 A B C A B C = A + C - B
2 addsubass A C B A + C - B = A + C - B
3 2 3com23 A B C A + C - B = A + C - B
4 1 3 eqtr4d A B C A B C = A + C - B