Metamath Proof Explorer


Theorem sumeq12sdv

Description: Equality deduction for sum. General version of sumeq2sdv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses sumeq12sdv.1 φ A = B
sumeq12sdv.2 φ C = D
Assertion sumeq12sdv φ k A C = k B D

Proof

Step Hyp Ref Expression
1 sumeq12sdv.1 φ A = B
2 sumeq12sdv.2 φ C = D
3 1 sumeq1d φ k A C = k B C
4 2 sumeq2sdv φ k B C = k B D
5 3 4 eqtrd φ k A C = k B D