Metamath Proof Explorer


Theorem superuncl

Description: The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020)

Ref Expression
Hypothesis superficl.a A=z|Bz
Assertion superuncl xAyAxyA

Proof

Step Hyp Ref Expression
1 superficl.a A=z|Bz
2 vex xV
3 vex yV
4 2 3 unex xyV
5 sseq2 z=xyBzBxy
6 sseq2 z=xBzBx
7 sseq2 z=yBzBy
8 ssun3 BxBxy
9 8 adantr BxByBxy
10 1 4 5 6 7 9 cllem0 xAyAxyA